

Egypt-Japan University of Science and Technology

School of Energy Resources, Environment, Chemical and Petrochemical Engineering

Undergraduate Program

Energy Resources Engineering Program (ERE)

Sustainable Energy and Environmental issues are the greatest threat to our planet this century. There is evidence that relates climate change to consumption of Energy; in particular, large Power stations. The Energy Resources Engineering Program is intended to provide state of the art education in conventional and Renewable Energy Resources and its conversion by means of economically and environmentally sustainable system and technology. The Program is interdisciplinary in nature; it contains mechanical, electric, and environmental subjects w

Specialization outcomes :

- Evaluate the sustainability and environmental issues related to mechanical power systems.
- Use energy efficiently.
- Apply industrial safety.

•

- Apply and integrate knowledge, understanding and skills of different subjects and available computer software to solve real problems in industries and power stations.
- Lead or supervise a group of engineers, technicians and work force.
- Carry out preliminary designs of fluid transmission and power systems,
 - investigate their performance and solve their essential operational problems. Design, operate and maintain internal combustion and steam engines.

PROGRAM COURSES Core Courses (courses weight 2 or 3 credit hours)

Code	Course Title
ERE 311	Project Based Learning on ERE
ERE 312	Fluid Mechanics (2)
ERE 313	Thermodynamics (2)
ERE 314	Numerical Methods for Engineers
ERE 315	Refrigeration and Air Conditioning
ERE 316	Experimental Methods for Engineers
ERE 321	Seminar on ERE
ERE 322	Combustion and Air Pollution
ERE 323	Power Stations
ERE 324	Basics of Renewable Energy
ERE 325	Solar Energy
ERE 411	Design of Thermal and Energy Systems
ERE 412	Sustainable Energy
ERE 421	Energy Storage and Transmission
ERE 422	Energy Conversion and Management
ERE 450	Industrial Training
ERE 311	Project Based Learning on ERE
2000	0000
2004	www.ejust.edu.eg

Elective Courses: (Each course weights 3 credit hours)

Code	Course Title
ERE 413	Hydraulic Machines and Hydraulic Stations
ERE 414	Desalination Technology
ERE 415	Energy Systems and Power Plants and Economics
ERE 316	Computational Fluid Dynamics (CFD)
ERE 417	Safety Codes and Environmental Laws
ERE 418	Project Management
ERE 419	Basics of Electrical Power and Smart Grid
ERE 423	Energy Systems
ERE 424	Energy Efficient Buildings
ERE 425	Energy Economics
ERE 426	Nuclear Power Plants
ERE 427	Gas Turbines
ERE 428	Diesel Engines
ERE 429	Electric Power and Machines
ERE 430	Turbines and Compressors
ERE 431	Thermal-Hydraulic Power Plants
ERE 432	Heat Exchangers

Graduation Project Thesis:

- ERE 410 Senior Project Thesis (4 Credits)
- ERE 420 Senior Project Thesis (4 Credits)

Check Department Study Plan

Chemical and Petrochemical Engineering Program (CPE):

The chemical and petrochemical engineering program is looking for strengthen its position in areas where it is viewed as preeminent, including: chemical process industries, unit operation, separation processes, transport phenomena, catalysis and reaction engineering, pharmaceutical engineering, advanced process modeling and process simulations. Continue to build upon our strong foundation in areas including green chemistry, clean production and renewable energy (e.g., solar, biofuels, energy storage) and to some extent in pharmaceutical and biomedical engineering, with the aim of becoming recognized as a top-tier program for education and research in these areas.

Specialization outcomes :

- Demonstrate knowledge and understanding of the fundamentals, basic characteristics and features of organic and inorganic reactions, and their application in chemical process industries including petroleum refining, natural gas processing, petrochemicals industry, electrochemistry, fertilizers and ceramics, etc.
- Demonstrate knowledge and understanding of the principles of chemical engineering including chemical reaction equilibrium and thermodynamics; mass and energy balance; transport processes; separation processes,
 - mechanical unit operations and process control.
- Demonstrate knowledge and understanding of general principles of design techniques specific to particular products and processes including reactor and vessel design.
- Demonstrate knowledge and understanding of environmental impact of various industries, waste minimization and treatment of industrial facilities.
 Integrate steps into a sequence and apply analysis technique such as energy

www.ejust.edu.eg

and mprocessing ass balance.

- Collect data, draw simplified equipment flow sheets, charts and curves and interpret data derived from laboratory observation.
 - Perform complete mass and energy balances for chemical engineering plants.
 - Conduct troubleshooting in chemical engineering plants.
 - Use chemical engineering IT tools and programming in design.
 - Determine the characteristics and performance of measurement and control systems.

Compulsory Courses: (Each course weights 3 credit hours)

Code	Course Title
CPE 213	Material and Energy Balance
CPE 311	Seminar on CPE (2Cr.hr)
CPE 312	Thermodynamics for Chemical Eng.
CPE 313	Chemical Process Technologies I (Organic.)
CPE 314	Chemical Process Technologies II (Inorganic)
CPE 315	Chemical Reaction Kinetics
CPE 316	Separation Processes
CPE 321	Project Based Learning on CPE (2Cr.hr)
CPE 322	Chemical Process Technologies III (Gas and Petrochemicals)
CPE 323	Corrosion and Electrochemical Eng.
CPE 324	Chemical Process Modeling
CPE 325	Mechanical Separation Process
CPE 411	Unit operations Laboratory
CPE 412	Chemical Process control
CPE 421	Clean Production and Sustainable Development
CPE 422	Plant Design and Process simulation

Elective Courses (Each course weights 3 credit hours)

Code	Course Title
CPE421	Petroleum Engineering
CPE422	Polymers Engineering
CPE423	Catalysis Engineering
CPE424	Desalination Technologies
CPE425	Design of Waste Treatment Units
CPE426	Biofuel Engineering
CPE427	Chemical Engineering Computer Skills
CPE428	Renewable Energy Resources and Engineering
CPE429	Fuel Cell Engineering
CPE430	Surface Analysis
CPE431	Biochemical Engineering and Biotechnology
CPE432	Process Optimization
CPE433	Air Pollution Control
CPE434	Chemical Process Safety
CPE435	Introduction to Nanotechnology
CPE436	Biochemicals and food Industry

Graduation Project Thesis:

- CPE 415 Senior Project I
- CPE 420 Senior Project II

Industrial training

• CPE 450 Industrial Training (3 credit hours)

Check Department Flow Chart and Study Plan